Hosted by IDTechEx
Truly Global Daily News
Interpreted by Experts
HomeEventsReportsAdvertiseTVCareersAbout UsSign-up or LoginIDTechExTwitterFacebookLinkedInGoogle+YoutubeRSSForward To Friend
Posted on June 10, 2009

New device to store electrical energy

Perovskite Photovoltaics 2016-2026
Hybrid electric cars or solar panels both have a problem—the technology to store the electrical power and energy is inadequate. Battery systems that fit in cars don't hold enough energy for driving distances, yet take hours to recharge and don't give much power for acceleration. Renewable sources like solar and wind deliver significant power only part time, but devices to store their energy are expensive and too inefficient to deliver enough power for surge demand.
Researchers at the Maryland NanoCenter at the University of Maryland have developed new systems for storing electrical energy derived from alternative sources that are, in some cases, 10 times more efficient than what is commercially available and will significantly enhance the performance of electrical energy storage devices.
Using new processes central to nanotechnology, they create millions of identical nanostructures with shapes tailored to transport energy as electrons rapidly to and from very large surface areas where they are stored. Materials behave according to physical laws of nature. The Maryland researchers exploit unusual combinations of these behaviours (called self-assembly, self-limiting reaction, and self-alignment) to construct millions -and ultimately billions - of tiny, virtually identical nanostructures to receive, store, and deliver electrical energy.
Triboelectric Energy Harvesting (TENG) 2017-2027
"These devices exploit unique combinations of materials, processes, and structures to optimize both energy and power density—combinations that, taken together, have real promise for building a viable next-generation technology, and around it, a vital new sector of the tech economy," said Gary Rubloff, director of the University of Maryland's NanoCentre. "The goal for electrical energy storage systems is to simultaneously achieve high power and high energy density to enable the devices to hold large amounts of energy, to deliver that energy at high power, and to recharge rapidly (the complement to high power)."
Electrical energy storage devices fall into three categories. Batteries, particularly lithium ion, store large amounts of energy but cannot provide high power or fast recharge. Electrochemical capacitors (ECCs), also relying on electrochemical phenomena, offer higher power at the price of relatively lower energy density. In contrast, electrostatic capacitors (ESCs) operate by purely physical means, storing charge on the surfaces of two conductors. This makes them capable of high power and fast recharge, but at the price of lower energy density.
The Maryland research team's new devices are electrostatic nanocapacitors which dramatically increase energy storage density of such devices - by a factor of 10 over that of commercially available devices - without sacrificing the high power they traditionally characteristically offer. This advance brings electrostatic devices to a performance level competitive with electrochemical capacitors and introduces a new player into the field of candidates for next-generation electrical energy storage.
Electric Vehicle Energy Harvesting/Regeneration 20
Where will these new nanodevices appear? The researchers emphasize that they are developing the technology for mass production as layers of devices that could look like thin panels, similar to solar panels or the flat panel displays we see everywhere, manufactured at low cost. Multiple energy storage panels would be stacked together inside a car battery system or solar panel. In the longer run, they foresee the same nanotechnologies providing new energy capture technology (solar, thermoelectric) that could be fully integrated with storage devices in manufacturing.
Top Image: Electrostatic nanocapacitors formed in nanoporous anodic aluminum oxide (darker yellow) film by sequential atomic layer deposition of metal (blue), insulator (yellow), and metal. Insert: cross-section of actual structure, represented as rescaled scanning electron micrograph. Source: A. James Clark School of Engineering, U-Md