Hosted by IDTechEx
Truly Global Daily News
Interpreted by Experts
HomeEventsReportsAdvertiseTVCareersAbout UsSign-up or LoginIDTechExTwitterFacebookLinkedInGoogle+YoutubeRSSForward To Friend
Posted on May 02, 2013

Researchers create edible battery

Thermoelectric Energy Harvesting 2016-2026
Stimulating damaged tissue, bio-sensing gastric health, targeting drug delivery and more could soon be as easy as popping your morning multivitamin — thanks to the joint work of Carnegie Mellon University's Christopher Bettinger and Jay Whitacre. The two cutting-edge researchers have combined forces to develop edible electronic devices — no larger than ordinary pills — to improve medical care.
Bettinger has been developing pioneering biodegradable electronic materials for medical use, but had a few nagging concerns. "Two questions kept coming up," he explained. "First, how were we going to power these devices? Second, if they're degradable and temporary, then what was the best way to integrate them with the human body?"
Whitacre, associate professor of materials science and engineering and engineering and public policy, had created a revolutionary low-cost, non-toxic sodium ion battery. "I had claimed my device was so non-toxic that you 'could eat the battery,'" explained Whitacre. "Chris came into my office and asked, 'Can you really eat it?' The answer is yes and the rest is history — my edible battery chemistry with his need for low level power in a digestible form were a great match."
"We thought the innovation from that battery could be a great segue to medical materials," added Bettinger. "So we leveraged its advantages in a different setting."
Electric Vehicle Energy Harvesting/Regeneration 20
With post-doctoral researchers Young Jo Kim and Sang-Eun Chun as part of the team, they devised a tiny, biocompatible battery in edible form that a patient could 'take' once a day.
The shape-memory polymer conceived in Bettinger's lab starts small when swallowed, then expands in the body where needed. The battery materials created in Whitacre's lab are commonly available and inexpensive — necessary for a daily device. The battery materials pass right through the system while the binding materials naturally biodegrade.
Unlike an implanted device, it's minimally invasive, and as with any orally-taken 'pill,' doesn't require sterilization. And if that weren't enough, the battery activates itself when wet, so the casing can be designed to absorb water at a pre-determined rate meaning "actual initiation would be passively engineered in the device itself," says Bettinger. While specific applications are still in the future, it's a remarkable way to "lay the groundwork."
Source and top image showing a graphic demonstration of the device: Carnegie Mellon University