Hosted by IDTechEx
Truly Global Daily News
Interpreted by Experts
HomeEventsReportsAdvertiseCareersAbout UsSign-up or LoginIDTechExTwitterFacebookLinkedInGoogle+YoutubeRSSForward To Friend

Discovery boosts energy storage of supercapacitors

Posted on July 30, 2013
IoT, EH and WT Europe 2015
Researchers at the University of Central Florida have developed a technique to increase the energy storage capabilities of supercapacitors, essential devices for powering high-speed trains, electric cars, and the emergency doors of the Airbus A380.
 
The finding, which offers a solution to a problem that has plagued the growing multi-billion dollar industry, utilizes a unique three-step process to "print" large - area nanostructured electrodes, structures necessary to improve electrical conductivity and boost performance of the supercapacitor.
 
Supercapacitors have been around since the 1960's. Similar to batteries, they store energy. The difference is that supercapacitors can provide higher amounts of power for shorter periods of time, making them very useful for heavy machinery and other applications that require large amounts of energy to start. However, due to their innate low energy density; supercapacitors are limited in the amount of energy that they can store.
 
Jayan Thomas, an assistant professor in UCF's NanoScience Technology Center, led the project. "We had been looking at techniques to print nanostructures," said Thomas. "Using a simple spin-on nanoprinting (SNAP) technique, we can print highly-ordered nanopillars without the need for complicated development processes. By eliminating these processes, it allows multiple imprints to be made on the same substrate in close proximity."
 
Webinars Generic Banner
This simplified fabrication method devised by Thomas and his team is very attractive for the next-generation of energy storage systems. "What we've found is by adding the printed ordered nanostructures to supercapacitor electrodes, we can increase their surface area many times," added Thomas. "We discovered that supercapacitors made using the SNAP technique can store much more energy than ones made without."
 
 
Source and top image: University of Central Florida
Top image shows: Doctoral Student Zenan Yu and Professor Jayan Thomas hold samples (also magnified in the background) of nanopillar structures they successfully printed
 
 

Related Posts

Related IDTechEx Events

Related Research Reports from IDTechEx

Leave a Comment

Your email address will not be published.
Please enter the numbers and/or letters in the image.
Required fields are marked *
  • Popular
  • Recent
  • Comments

Energy Harvesting Journal Tags

EV europe 2015
Wireless Sensor Networks (WSN) 2012-2022