Published By
IDTechEx
Follow us:
follow us on twitter
subscrive to our rss feed
follow us on facebook
Email
Password
IDTechEx
Energy Harvesting USA 2014 40% Discount
Energy Harvesting Journal

Innovative power amplifier for a MEMS-based energy harvester

ZoomInnovative power amplifier for a MEMS-based energy harvester
Imec and
×Holst Centre
Holst Centre
is exhibiting at
Printed Electronics USA 2014
Santa Clara, CA, USA
19 - 20 Nov 2014
Holst Centre have used a secondary mass-spring system to increase the power (or bandwidth) of a MEMS-based energy harvester. They demonstrated power amplification up to a factor of 51 by simply placing a packaged harvester on top of a thin metal beam. The presented solution can easily be implemented in real applications, for which the power (or bandwidth) generated by the original MEMS harvester is insufficient.
 
Vibration energy harvesters rely on the amplification of an input vibration by putting a seismic mass at mechanical resonance. The mechanical energy of the resonating mass is then partly converted into electrical energy, e.g. by a variable capacitor (electrostatic harvester) or by a piezoelectric capacitor (piezoelectric harvester). The power output typically ranges from 50 up to 500µW. Imec and Holst Centre now present a method to amplify the power output or the bandwidth of such a harvester by placing the packaged MEMS harvester on a steel beam. This is analogous to adding a second mass and spring to the original harvester mass-spring system. This method is very useful for applications for which the vibrations are too small to generate useful power, or for applications with sinusoidal vibration sources such as engines, for which the bandwidth of the harvester is too small.
 
By adding a second mass-spring system, a coupled oscillator is created in which the second mass consists of the mass of the package of the harvester and the mass of the additional beam. The presence of this system splits the original resonance frequency of the harvester into two frequencies. By tuning the ratios of the masses (ratio=α) and spring constants (ratio=β) of both systems (harvester and beam/package), the two amplitudes can get larger than the original amplitude of the harvester. For a steel beam of only a few cm's long, this happens when the mass of the harvester (typically 0.039g) is 100 times smaller than the sum of the masses of beam and package. By using this method, power amplification up to a factor of 51, leading to a sensitivity of 1.2mW/g2 has been demonstrated for a piezoelectric harvester.
 
The researchers also investigated the feasibility of implementing the additional mass-spring system in real applications where other electronics are needed. A possible embodiment is to place a steel beam on top of a PCB, on which the ICs as well as the rechargeable battery are placed. They found that the maximum vibration amplitude of the metal beam is around 50µm, requiring only minimal extra volume. It will thus be easy to integrate the proposed setup in e.g. an existing wireless sensor node.
 
 
 
IoT USA 2014
 
Webinars Generic Banner
Thermoelectric Energy Harvesting 2014-2024
Energy Harvesting and Storage for Electronic Devic
Green_Plug
Wireless Sensor Networks (WSN) 2012-2022

IDTechEx ReportsIDTechEx Reports

Energy Harvesting and Storage 2014-2024: Forecasts, Technologies, Players
Updated in Oct 2014
Thermoelectric Energy Harvesting 2014-2024: Devices, Applications, Opportunities
Brand new for May 2014
Piezoelectric Energy Harvesting 2013-2023: Forecasts, Technologies, Players
Updated in Jan 2014
Wireless Power Transmission for Consumer Electronics and Electric Vehicles 2014-2024
Full details here
Energy Harvesting/ Regeneration for Electric Vehicles Land, Water & Air 2014-2024
Full details here
Organic Photovoltaics (OPV) 2013-2023: Technologies, Markets, Players
Full details here
Dye Sensitized Solar Cells (DSSC/DSC) 2013-2023: Technologies, Markets, Players
Full details here
Analysis of Energy Harvesting Applications
Full details here
Wireless Sensor Networks (WSN) 2014-2024: Forecasts, Technologies, Players
Updated in March 2014
Electrochemical Double Layer Capacitors: Supercapacitors 2014-2024
Full details here
Batteries & Supercapacitors in Consumer Electronics 2013-2023: Forecasts, Opportunities, Innovation
Updated in Feb 2014
Thin Film Photovoltaics 2012-2022: Forecasts, Technologies, Analysis
Updated in Aug 2013

IDTechEx EventsIDTechEx Events