Published By
Follow us:
follow us on twitter
subscrive to our rss feed
follow us on facebook
Energy Harvesting Europe 2015
Energy Harvesting Journal

Progress with thermoelectric harvesting

ZoomProgress with thermoelectric harvesting
At the forthcoming Energy Harvesting USA External Link event in Boston Massachusetts, 16-17 November, Prof Gang Chen of Massachusetts Institute of Technology will talk on "Power from temperature difference: thermoelectric technology for energy harvesting". He has published extensively in the area of nanoscale energy transport and conversion and nanoscale heat transfer. He serves on the editorial boards for four journals in heat transfer and nanotechnology and chaired the advisory board of ASME Nanotechnology Institute. He is the director of Solid-State Solar-Thermal Energy Conversion Center funded by the US DOE's Energy Frontier Research Center's program. He co-founded GMZ Energy.
ZoomProgress with thermoelectric harvesting
Source: Nextreme
Making its thermal energy harvester from quite a different semiconductor process technology is Nextreme Thermal Solutions (Durham, NC). It generates electricity from the difference in temperature across an array of flip-chip bumps, basically conventional technology —except they include a thin film of 10-20µm single microcrystals of bismuth telluride with special dopants, deposited by a unique MOCVD process. The company currently sells another version of the same basic technology that runs in reverse to pump heat out of laser diodes and other heat sensitive devices.
Nextreme has demonstrated power output of 16mW with a 70°C differential between the hot and cold sides of the device, for power density of ~0.6W/cm2, more at higher heat differentials. Four of the sunflower-seed sized energy harvesting modules can provide 4V to charge a tiny thin-film battery from Infinite Power Solutions in about 20 minutes, depending on the heat difference available. But even the modest difference of 30° F (10°C) between body temperature and common ambient temperatures indoors or at night of 70° F or below can be enough to trickle charge a battery for many sensor applications, says Paul Magill, VP of marketing and business development.
Magill argues the near-term market opportunity is for wireless sensor systems using energy harvesters and trickle charged batteries for industrial condition monitoring, such as strain gauges monitoring aircraft structures and sensors tracking smoke-stack emissions. But a much bigger opportunity going forward may be to use the wasted heat produced by the automobile to run some of its internal systems. "Strain gauges may come to market this year," says Magill, "but other applications are still one to two years out."
EnOcean GmbH and Schneider Electric have worked on thermoelectric harvesting for industrial wireless sensors.
Thermoelectrics for healthcare
There is increasing interest in using thermoelectric harvesting in healthcare despite its inefficiency and the relatively modest thermal gradients encountered. This is because thermoelectric have no moving parts and no maintenance and, while not cheap, they are seen as affordable for these critical components. At the forthcoming Energy Harvesting USA External Link event in Boston Massachusetts, 14-15 November, GeorgiaTech, Biorasis and Tagsense describe new mass market electronic products for healthcare such as glucose monitors and diagnostic patches. Dr Thierry Caillat of NASA looks at high temperature thermoelectric harvesting.


Dr Peter Harrop

Dr Peter Harrop

Dr Peter Harrop is the Founder and Chairman of IDTechEx.
+44 (0)7850 258317

Learn More

Related Topics

  • Energy Harvesting *~
  • Printed, Flexible and Organic Electronics » Applications & Markets » Transport & Military
Webinars Generic Banner
Thermoelectric Energy Harvesting 2014-2024
Energy Harvesting and Storage for Electronic Devic
Wireless Sensor Networks (WSN) 2012-2022

IDTechEx ReportsIDTechEx Reports

Energy Harvesting and Storage 2014-2024: Forecasts, Technologies, Players
Updated in Oct 2014
Thermoelectric Energy Harvesting 2014-2024: Devices, Applications, Opportunities
Updated in Oct 2014
Piezoelectric Energy Harvesting 2013-2023: Forecasts, Technologies, Players
Updated in Jan 2014
Energy Harvesting/ Regeneration for Electric Vehicles Land, Water & Air 2015-2025
Brand new for December 2014
The Solar Flare Executive Report Series
Full details here
Photovoltaic Manufacturer Shipments: Capacity, Price & Revenues 2013/2014
Full details here
Global Analysis of the Markets for Solar Products & Five-Year Forecast 2013/2014
Full details here
Electric Vehicle Forecasts, Trends and Opportunities 2015-2025
Brand new for October 2014
Electric Aircraft 2014-2024: Trends, Projects, Forecasts
Brand new for June 2014
Internet of Things (IoT): Business Opportunities 2015-2025
Updated in Nov 2014
Wireless Power Transmission for Consumer Electronics and Electric Vehicles 2014-2024
Full details here
Wearable Technology 2014-2024: Technologies, Markets, Forecasts
Updated in Sept 2014
Organic Photovoltaics (OPV) 2013-2023: Technologies, Markets, Players
Full details here
Dye Sensitized Solar Cells (DSSC/DSC) 2013-2023: Technologies, Markets, Players
Full details here
Analysis of Energy Harvesting Applications
Full details here
Hybrid and Electric Vehicles for Military, Police & Security 2012-2022
Updated in May 2013
Wireless Sensor Networks (WSN) 2014-2024: Forecasts, Technologies, Players
Updated in March 2014
Electrochemical Double Layer Capacitors: Supercapacitors 2014-2024
Full details here
Batteries & Supercapacitors in Consumer Electronics 2013-2023: Forecasts, Opportunities, Innovation
Updated in Feb 2014
Thin Film Photovoltaics 2012-2022: Forecasts, Technologies, Analysis
Updated in Aug 2013

IDTechEx EventsIDTechEx Events