Hosted by IDTechEx
Truly Global Daily News
Interpreted by Experts
HomeEventsReportsAdvertiseTVCareersAbout UsSign-up or LoginIDTechExTwitterFacebookLinkedInGoogle+YoutubeRSSForward To Friend
Posted on March 20, 2017

Micro-energy harvester for self-sustaining, integrated chip systems

Solid-State and Polymer Batteries 2017-2027
The Fraunhofer Institute for Photonic Microsystems IPMS is starting the two-year CONSIVA research project focusing on the development of micro-energy harvesters for self-sustaining, integrated chip systems. The use of novel piezoelectric materials in vibration-based harvesters can drastically reduce their size and significantly prolong operation time. This paves the way for the utilization of previously unachievable medical implants and increasingly small, wireless sensor systems.
 
Many areas of life today already depend on the reliable, fully-automated operation of miniaturized systems. In the future, the networking of complex components will play an even greater role. However, until now, most of these decentralized systems have been powered via electrical lines or batteries. Because these concepts can only be used to a limited extent for site-independent networks or poorly accessible sensor positions, technology development, such as energy harvesting, is urgently needed to provide an alternative energy supply.
 
Energy harvesters can supply self-sustaining microsystems by collecting small amounts of energy from sources such as ambient temperature, light irradiation or vibration. Vibration-based harvesters, in particular, convert existing kinetic energy from the environment into electrical energy. Piezoelectric materials are especially suitable for the development of vibration-based harvesters by the direct mechanical-electrical conversion principle.
 
Triboelectric Energy Harvesting (TENG) 2017-2027
In the CONSIVA research project, the piezoelectric coefficient and the application potential of hafnium dioxide thin layers are to be evaluated at the Fraunhofer IPMS Center Nanoelectronic Technologies (CNT) in Dresden. This material has ferroelectric and therefore piezoelectric properties and is qualified in microelectronics. Due to its high dielectric constant, it is already used in modern field-effect transistors.
 
In addition to the material development and the electromechanical characterization of active test structures, a harvester layout adapted to hafnium dioxide is to be conceptualized at the CNT. On the basis of these designs, Fraunhofer scientists want to illustrate new, concrete application scenarios for micro-energy harvesting. Dr. Wenke Weinreich, group leader at Fraunhofer IPMS-CNT explains, "Over the past few years, we have been able to gain extensive experience with the manufacturing, integration and optimization of ferroelectric hafnium dioxide for the most up-to-date storage applications. We see great potential to successfully use these experiences, especially in the field of energy harvesting. Thanks to these novel piezoelectric materials, we can decisively advance the miniaturization of vibration-based harvesters."
 
The fields of application for energy-efficient microsystems are mainly found in medical and wireless sensor technology. The findings from the implementation of micro-energy harvesting technology can also be transferred to other fields of application in the Internet of Things (IoT).
 
Autonomous Vehicles Land, Water, Air 2017-2037
The CONSIVA project is funded by the Development Bank of Saxony SAB.
 
Source: Fraunhofer Institute for Photonic Microsystems
Top image: Caltech
Learn more at the next leading event on the topic: Energy Independent Electric Vehicles 2017 External Link on 27 - 28 Sep 2017 in TU Delft, Delft, Netherlands hosted by IDTechEx.