Published By
Follow us:
follow us on twitter
subscrive to our rss feed
follow us on facebook
Energy Harvesting Europe 2015
Energy Harvesting Journal

5 things you always wanted to know, thermoelectric energy harvesting

Zoom5 things you always wanted to know, thermoelectric energy harvesting
1. Not just generators, coolers too
The thermoelectric effect can be simply described as the conversion of a temperature difference into a voltage (Seebeck effect) and vice versa (Peltier effect). This means that the phenomenon can be used to generate electricity out of a prevailing ambient temperature difference, but it also means that by providing the necessary voltage to a material system that displays thermoelectric properties, we can effectively cool a device, or a component, or the ambient air.
In fact, thermoelectric coolers for electronics are a significant market already, larger than the existing market for thermoelectric generators. IDTechEx research in the report "Thermoelectric Energy Harvesting 2013-2023: Devices, Applications, Opportunities" ( External Link) suggests that the market for thermoelectric generators could reach over $270 million by 2018. For more information attend IDTechEx's forthcoming event, Energy Harvesting & Storage, on 17th and 18th April in Berlin External Link.
2. TEGs in space and in...
Radioisotope thermoelectric generators (RTGs) are identical to conventional thermoelectric generators in that an array of thermocouples generates power through taking advantage of the Seebeck effect. The main difference though lies in the fact that the source of the power they generate is the heat released during radioactive decay.
RTGs have been one of the most popular source of power generation in satellites, probes and other types of unmanned space missions, but one of their more unusual type of application was particularly popular back in the 1970s...
3. Pacemakers!
Pacemakers are used to stimulate a regular heartbeat when the body's natural electrical pacing system is irregular or not transmitting properly. Over the years, various power sources have been used for pacemakers, including RTG using plutonium-238. As of 2004, there were still 90 nuclear powered pacemakers still in use in the USA, which need to be disposed of properly upon removal.
Zoom5 things you always wanted to know, thermoelectric energy harvesting
4. Thin film vs bulk thermoelectrics: A trade off
Thin film thermoelectrics are typically 5 µm to 20 µm thick, versus 200 µm for the thinnest pellets used in bulk thermoelectrics, resulting in several differences. Heat flux for example is inversely proportional to the thickness of the thermoelectric material and thus, can be more than 20 times greater than in bulk thermoelectrics, resulting in higher efficiency devices, whether they are being used as coolers or as generators. It's important to bear in mind though that the thin form factor makes it harder to maintain a large temperature difference between the two sides of the array of thermocouples.
5. Radiator valves, cooking pots, nokia concept
Although we have already seen mobile phone concepts and even cooking pots utilising thermoelectric energy harvesting, thermoelectric radiator valves are currently becoming very popular, with the temperature difference between a radiator and the ambient air being the source for the generated power. Honeywell, Moeller, Kieback&Peter, Tahydronics are some of the companies that already have such products available on the market. Thin film thermoelectrics company Micropelt is also developing its own version of the device. The type of application that was right in front of you all along, wouldn't you think?
Zoom5 things you always wanted to know, thermoelectric energy harvesting
Honeywell and Tahydronics thermoelectric radiator valves.
For more information on the topic of thermoelectrics and how they can be used in energy harvesting applications, attend Energy Harvesting and Storage in Berlin, Germany, on the 17th and 18th of April 2013. More details on the event, time tables, and full agenda of speakers and presentations can be found at: External Link


Dr Harry Zervos

Dr Harry Zervos

+1 617 577 7890 xt 204
Webinars Generic Banner
Wireless Sensor Networks (WSN) 2012-2022
Energy Harvesting and Storage for Electronic Devic
Thermoelectric Energy Harvesting 2014-2024

IDTechEx ReportsIDTechEx Reports

Energy Harvesting and Storage 2014-2024: Forecasts, Technologies, Players
Updated in Oct 2014
Thermoelectric Energy Harvesting 2014-2024: Devices, Applications, Opportunities
Updated in Oct 2014
Piezoelectric Energy Harvesting 2013-2023: Forecasts, Technologies, Players
Updated in Jan 2014
Energy Harvesting/ Regeneration for Electric Vehicles Land, Water & Air 2015-2025
Brand new for December 2014
The Solar Flare Executive Report Series
Full details here
Photovoltaic Manufacturer Shipments: Capacity, Price & Revenues 2013/2014
Full details here
Global Analysis of the Markets for Solar Products & Five-Year Forecast 2013/2014
Full details here
Wireless Power Transmission for Consumer Electronics and Electric Vehicles 2014-2024
Full details here
Organic Photovoltaics (OPV) 2013-2023: Technologies, Markets, Players
Full details here
Dye Sensitized Solar Cells (DSSC/DSC) 2013-2023: Technologies, Markets, Players
Full details here
Analysis of Energy Harvesting Applications
Full details here
Wireless Sensor Networks (WSN) 2014-2024: Forecasts, Technologies, Players
Updated in March 2014
Electrochemical Double Layer Capacitors: Supercapacitors 2014-2024
Full details here
Batteries & Supercapacitors in Consumer Electronics 2013-2023: Forecasts, Opportunities, Innovation
Updated in Feb 2014
Thin Film Photovoltaics 2012-2022: Forecasts, Technologies, Analysis
Updated in Aug 2013

IDTechEx EventsIDTechEx Events